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Answer ALL Questions.

I. a) i) Let T be the linear operator on 
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 which is represented in the standard ordered    

           basis by the matrix 
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.  Find a basis of
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, each vector of which is a 

           characteristic vector of T.

                                                                  Or

        ii) Let T be a linear operator on a finite dimensional vector space V.  Let                                                        
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be the distinct characteristic values of T and let 
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be the null space of 
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then prove that 

              dim W=
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b)     i)  State and prove Cayley-Hamilton theorem

                                                                       Or                                                                                                 

        ii)  Let V be a finite dimensional vector space over F and T be a linear operator on V       

              then prove that T is triangulable if and only if the minimal polynomial for T is a     

              product of linear polynomials over F.                                                  (15)

  II. a) i) Let V be a finite dimensional vector space.  Let 
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              let 
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Then prove that the following are equivalent :

              1) 
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 are independent.

              2) For each j,
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         iii)  Let T be a linear operator on a finite dimensional vector space V and let 
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 are linear operators on V such that 1) each 
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is a projection

               2)
[image: image16.wmf]0    if ij

ij

EE

=¹

 3) 
[image: image17.wmf]12

...

k

IEEE

=++

and let 
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is the range of
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 is invariant under T then prove that T
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      b) i)  Let T be a linear operator on a finite dimensional vector space V.  Suppose that

              the minimal polynomial for T decomposes over F into a product of linear 

              polynomials.  Then prove that there is a diagonalizable operator D on V and 

              nilpotent operator N on V such that 1)  T= D+ N

                                                                        2)  DN=ND

                                                       Or

         ii) Let T be a linear operator on a finite dimensional vector space V.   Then 

              prove that T has a cyclic vector if only if the minimal and characteristic 

              polynomial for T are identical.                                                                     (15)

III. a) i)   Let T be a linear operator on 
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which is represented in standard ordered basis

                 by the matrix 
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. Prove that T has no cyclic vector.  What is the                

                T-cyclic subspace generated by the vector (1,-1,3)?

                                                                        Or

 ii)  If U is a linear operator on the finite dimensional vector space W and if U has a 

       cyclic vector then prove that there is an ordered basis for W in which U is 

        represented by the companion matrix of the minimal polynomial for U.     (5)

     b)    i)  State and prove Cyclic Decomposition theorem.

                                                            Or       

   ii)  If T is a nilpotent operator on a vector space V of dimension n then prove that   

         characteristic polynomial for T is 
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IV. a) i)  Let V be a finite dimensional complex inner product space and f  a form on V.  

               Then prove that there is an orthonormal basis for V in which the matrix of f is 

                upper-triangular.

                                                                      Or

 ii) Let T be a linear operator on a complex finite dimensional inner product space

      V.  Then prove that T is self-adjoint if and only if 
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is real for every 
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 in V.                                                                                                                                                                                                                                            (5) 

       b) i) Let f be the form on 
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defined by f
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               matrix of f with respect to the basis {(1,-1),(1,1)}.

           ii) State and prove the spectral theorem.                                                  (6+9)

                                                     Or

           iii) Let f be a form on a real or complex vector space V and 
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a basis            

                for the finite dimensional subspace W of V.  Let M be the rxr matrix with 

                entries 
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 the set of all vectors 
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 W. Then prove that W
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 is a subspace of V and 

                
[image: image39.wmf]'

WW

Ç

={0} if and only if M is invertible and when this is the case V=W+W
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  V. a) i) Let F be a field.  Find all bilinear forms on the space 
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F

.

                                                                      Or

          ii) State and prove polarization identity for symmetric bilinear form f.       (5)                                                                

    b)  i)  Let V be a finite dimensional vector space over the field of complex numbers.

              Let f be a symmetric bilinear form on V which has rank r. Then prove that there 

              is an ordered basis 
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for V such that the matrix of f in the 

             ordered basis B is diagonal and f (
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                                                                    Or

 ii)   If f is a non-zero skew-symmetric bilinear form on a finite dimensional vector 

        space V then prove that there exist a finite sequence of pairs of           

        vectors,
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             3)  If 
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is orthogonal to all 
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                    of f to 
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 is the zero form.                                    



 (15)

_______________

**************

XZ 25








1
1

_1265079334.unknown

_1265113003.unknown

_1265121528.unknown

_1266290612.unknown

_1266290738.unknown

_1266290910.unknown

_1266290928.unknown

_1266290937.unknown

_1266290894.unknown

_1266290638.unknown

_1265122014.unknown

_1265123245.unknown

_1265123371.unknown

_1265124270.unknown

_1265122972.unknown

_1265121949.unknown

_1265120772.unknown

_1265120948.unknown

_1265113269.unknown

_1265080104.unknown

_1265080205.unknown

_1265080394.unknown

_1265080469.unknown

_1265080302.unknown

_1265080347.unknown

_1265080252.unknown

_1265080152.unknown

_1265079971.unknown

_1265080042.unknown

_1265079912.unknown

_1265050413.unknown

_1265077844.unknown

_1265079100.unknown

_1265079268.unknown

_1265077973.unknown

_1265077687.unknown

_1265077843.unknown

_1265077534.unknown

_1265076997.unknown

_1265049786.unknown

_1265049941.unknown

_1265050343.unknown

_1265050058.unknown

_1265050305.unknown

_1265049876.unknown

_1265048121.unknown

_1265047629.unknown

_1265048072.unknown

